

🕓 +1 281-801-0921 🔎 www.kalpracademy.com 🕲 Registration@kalpracademy.com

PROBABILITY FOR DATA SCIENTIST

- Basic Probability and Conditional Probability
- Properties of Random Variables
- Expectations (Mean) and Variance
- Entropy and cross-entropy
- Covariance and correlation
- Estimating probability of Random variable
- Understanding standard random processes.

PROBABILITY DISTRIBUTIONS

- Normal Distribution
- Binomial Distribution
- Multinomial Distribution
- Bernoulli Distribution
- Probability, Prior probability, Posterior probability
- Bayes Theorem
- Naive Bayes
- Naive Bayes Algorithm
- Normal Distribution

PYTHON PROGRAMMING

- Install python (Anaconda)
- Jupiter Notebook
- Install NumPy, Pandas,
- Matplotlib, Seaborn and SciKit Learn
- Spyder IDE

BASICS OF DATA PROCESSING

- Strings
- Lists
- Tuples
- Sets
- Dictionaries
- Control Flows
- Functions
- Formal, Positional, Keyword arguments
- Predefined functions (range, len, enumerates etc...)

DATA FRAMES

- Packages required for data Science in R and Python.
- Packages required for data Science in R and Python.

NUMPY PACKAGE

- One-dimensional Array
- Two-dimensional Array
- Pre-defined functions (arrange, reshape, zeros, ones, empty)
- Basic Matrix operations
- Scalar addition, subtraction, multiplication, division
- Matrix addition, subtraction, multiplication, division and transpose
- Slicing
- Indexing
- Looping
- Shape Manipulation
- Stacking

PANDA'S PACKAGE

- Series
- Data Frame
- Group By
- Crosstab
- Apply
- Map

DATA PREPARATION TECHNIQUES

- Structured Data Preparation
- Data Type Conversion
- Category to Numeric
- Numeric to Category
- Data Normalization: 0-1, Z-Score
- Skew Data handling: Box-Cox Transformation
- Missing Data treatment

EXPLORATORY DATA ANALYSIS (EDA)

- Statistical Data Analysis
- Exploring Individual Features
- Exploring Bi-Feature Relationships
- Exploring Multi-feature Relationships

FEATURE ENGINEERING (FE)

- Combine Features
- Split Features

DATA VISUALIZATION

- Bar Chart
- Histogram
- Box whisker plot
- Line plot
- Scatter Plot
- Heat Map
- Matplotlib, Seaboarn– Visualization

REGRESSION (SUPERVISED LEARNING)

- What is regression?
- Use Cases: Regression
- Linear Regression
- Theory behind Linear Regression
- Model Evaluation and related metrics
- Root Mean Square Error (RMSE)
- R-Square,
- Adj R-Square
- Feature selection methods
- Linear regression Practice Problem

OVERFITTING/UNDER FITTING

- Understand what overfitting is and under fitting model
- Visualize the overfitting and under fitting model
- How do you handle overfitting?

DECISION TREES

- What are Decision Trees?
- Gini, Entropy criterions
- Decision trees in Classification
- Decision trees in Regression
- Ensembles
- Random Forest
- Boosting (Ada, Gradient, Extreme Gradient)
- ▶ SVM
- Ensembles

RE-SAMPLING TECHNIQUES

- K-fold
- Repeated Hold-out Data
- Bootstrap aggregation sampling.

TREE BASED ALGORITHMS

- Entropy
- Gini Index
- Information Gain
- Tree Pruning

CLASSIFICATION (SUPERVISED LEARNING)

- What is Classification?
- Finding Patterns/Fixed Patterns
- Problems with Fixed Patterns
- Machine learning approach over fixed patter
- Decision Tree based classification.
- Ensemble Based Classification
- Logistic Regression (SGD Classifier)
- Accuracy measurements
- Confusion Matrix
- ROC Curve
- AUC Score
- Multi-class Classification
- Softmax Regression Classifier
- Multi-label Classification
- Multi-output Classification.

ENSEMBLE MODELS

- Random Forest
- Bagging
- Boosting
- Adaptive Boosting
- Gradient Boosting
- Extreme Gradient Boosting
- Heterogeneous Ensemble Models
- Stacking
- Voting

MULTIPLE/POLYNOMIAL REGRESSION (SCIKIT-LEARN)

- Multiple Linear Regressions (SGD Regressor)
- Gradient Descent (Calculus way of solving linear equation)
- Feature Scaling (Min-Max vs Mean Normalization)
- Feature Transformation
- Polynomial Regression
- Matrix addition, subtraction, multiplication and transpose
- Optimization theory for data scientist.

OPTIMIZATION THEORY (GRADIENT DESCENT ALGORITHM)

- Modelling ML problems with optimization requirements
- Solving unconstrained optimization problems
- Solving optimization problems with linear constraints
- Gradient descent ideas
- Gradient descent
- Batch gradient descent.
- Stochastic gradient descent.

MODEL EVALUATION AND ERROR ANALYSIS

- Train/Validation/Test split
- K-Fold Cross Validation
- The Problem of Over-fitting (Bias-Variance tread-off)
- Learning Curve
- Regularization (Ridge, Lasso and Elastic-Net)
- Hyper Parameter Tuning (Grid Search CV)

RECOMMENDATION PROBLEM

- What is Recommendation System?
- Top-N Recommender
- Rating Prediction
- Content based Recommenders.
- Limitations of Content based recommenders.
- Machine Learning Approaches for Recommenders.
- User-User KNN model, Item-Item KNN model
- Factorization or latent factor model
- Hybrid Recommenders
- Evaluation Metrics for Recommendation Algorithms
- Top-N Recommnder: Accuracy, Error Rate
- Rating Prediction: RMSE.

CLUSTERING (UNSUPERVISED LEARNING)

- Finding pattern and Fixed Pattern Approach
- Limitations of Fixed Pattern Approach
- Machine Learning Approaches for Clustering
- Iterative based K-Means Approaches
- Density based DB-SCAN Approach
- Evaluation Metrics for Clustering
- Cohesion, Coupling Metrics
- Correlation Metric.

SUPPORT VECTOR MACHINE (SVM)

- SVM Classifier (Soft/Hard Margin)
- Linear SVM
- Non-Linear SVM
- Kernel SVM
- SVM Regression.

PCA (UNSUPERVISED LEARNING)

- Dimensionality Reduction
- Choosing Number of Dimensions or Principal Components
- Incremental PCA
- Kernel PCA
- When to apply PCA?
- Eigen vectors
- Eigen values.

MODEL DEPLOYMENT

- Pickle (Pkl file)
- Model load from Pkl file and prediction.

ASSOCIATION RULES

- A priori Algorithm
- Collaborative Filtering (User-Item based)

DEEP LEARNING ALGORITHMS DEEP LEARNING:

- Introduction to Deep Learning
- Tensor flow
- Keras
- Setting up new environment for Deep Learning
- Perceptron model for classification and regression
- Perceptron Learning
- Limitations of Perceptron model
- Multi-layer Feed Forward NN model for classification and regression
- ML-FF-NN Learning with backpropagation.
- Applying ML-FF-NN and parameter tuning
- Pros and Cons of the Model
- Introduction to CNN with examples.

NATURAL LANGUAGE PROCESSING TEXT ANALYTICS (NLP):

- Bag of words
- Glove Dictionary
- Text Data Preparation
- Normalizing Text
- Stop word and Whitespace Removal
- Stemming
- Building Document Term Matrix
- NLP (Natural Language Processing).

MEET YOUR INSTRUCTORS

Dr. Malleswar Yenugu CEO of Kalpra Academy

SureshData Science Manager

Partha Senior Data Science Manager

Sandesh Data Science Manager